Mô tả sáng kiến: Một số giải pháp rèn kĩ năng thực hiện phép chia số tự – Tài liệu text

Mô tả sáng kiến: Một số giải pháp rèn kĩ năng thực hiện phép chia số tự – Tài liệu text

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập- Tự do –Hạnh phúc

MÔ TẢ SÁNG KIẾN

Mã số: ………….

1. Tên sáng kiến: Một số giải pháp rèn kĩ năng thực hiện phép chia số tự nhiên

cho học sinh lớp 4.

2. Lĩnh vực áp dụng sáng kiến: Lĩnh vực Giáo dục, áp dụng vào giảng dạy phép

chia số tự nhiên lớp 4.

3. Mô tả bản chất của sáng kiến:

3.1. Tình trạng giải pháp đã biết:

Qua kinh nghiệm giảng dạy trong năm học vừa qua, tôi thấy: Hầu hết các em đã

làm quen với kiến thức nền, nắm được kĩ thuật chia ở lớp 3 (chia cho số có một chữ

số). Đây là kiến thức cơ bản giúp các em thực hiện được phép chia số tự nhiên ở

lớp 4 (chia cho số có hai hoặc ba chữ số) nhưng chỉ ở mức độ các bài tập đơn giản.

Qua thực tế giảng dạy môn toán của năm học này, khi làm quen với phép chia

số tự nhiên có nhiều chữ số cho số có hai hoặc ba chữ số các em còn nhiều bỡ ngỡ,

lúng túng khi làm bài bởi các em vẫn còn chưa khắc sâu kĩ thuật thực hiện phép chia

số tự nhiên (4/15 học sinh chiếm 26,7%) ; Một số em còn mắc một số lỗi thường gặp

trong quá trình thực hiện phép chia như: Trừ có nhớ sai, xác định số dư sai, thiếu

hoặc thừa số 0 ở thương, chia chưa hết thì dừng lại hoặc thực hiện chia 2 lần ở hàng

đơn vị (6/15 học sinh chiếm 40%); Một số em còn gặp khó khăn khi ước lượng

thương thành phần, ước lượng thương chưa chính xác, nên nhiều em khi làm bài tập

thường tính sai kết quả (6/15 học sinh chiếm 40%).

Đề xuất giải pháp: Nhận thấy hạn chế của các em khi thực hiện phép chia, tôi

mạnh dạn đề xuất một số giải pháp rèn kĩ năng thực hiện phép chia số tự nhiên cho

học sinh lớp 4 theo một quá trình “khắc sâu kĩ thuật chia – khắc phục lỗi thường

gặp – rèn kĩ năng ước lượng thương thành phần”.

3.2. Nội dung giải pháp đề nghị công nhận là sáng kiến:

3.2.1. Mục đích của giải pháp: Nhằm khắc phục các hạn chế nêu trên, giúp các

em rèn kĩ năng thực hiện phép chia số tự nhiên có nhiều chữ số cho số có hai hoặc ba

Quý khách đang xem: Mô tả sáng kiến: Một số giải pháp rèn kĩ năng thực hiện phép chia số tự – Tài liệu text

chữ số một cách thành thạo. Tôi đã mạnh dạn sử dụng một số giải pháp sau:

3.2.2. Nội dung giải pháp:

0888806742. Khắc sâu kĩ thuật thực hiện phép chia số tự nhiên:

Thuộc bảng nhân, bảng chia là việc rất quan trọng với các em. Vì thế, tôi

thường xuyên kiểm tra việc học thuộc lòng các bảng nhân, chia của học sinh (kiểm

tra 15 phút đầu giờ, học sinh tự kiểm tra theo nhóm, tổ, cá nhân…) cho đến khi các

em thật thuộc. Ôn lại một số tính chất của phép nhân, phép chia.Việc ôn lại một số

tính chất cơ bản này giúp học sinh có thao tác, kĩ năng tính đúng, tính nhanh. Ôn lại

kĩ thuật chia nhằm khắc sâu kĩ thuật chia cho các em. Để thực hiện phép tính chia, ta

làm như sau: Đặt tính, xác định thương có mấy chữ số: Làm tốt bước này, các em sẽ
không bao giờ xác định thiếu hoặc thừa các chữ số của thương. Quy trình thực hiện
một phép tính chia: Trong mỗi phép chia, khi thực hiện tôi nhấn mạnh cần thực hiện
chia theo thứ tự từ trái sang phải. Mỗi phép chia thành phần từ phép tính thành phần
đầu tiên đến xong xuôi phép chia gồm có 3 bước tính: (Bước 1:Chia; Bước 2:Nhân;

Bước 3:Trừ). Thử lại kết quả của phép tính chia: Sau khi thực hiện phép tính chia,

muốn biết kết quả đúng hay không ta cần thử lại như sau: Với phép chia hết: Số bị

chia = thương (x) số chia. Với phép chia có dư: Số bị chia = thương (x) số chia +

(số dư).

0888806742. Khắc phục các lỗi thường gặp trong quá trình thực hiện phép tính:

VD: Trừ có nhớ sai:

35’1

16 1

16

29

15

(do trừ sai nên tìm số dư thứ 1 sai do đó dẫn

đến yêu mến thứ 2 sai và số dư cuối cùng sai.)

Nguyên nhân: Đại đa số học sinh sai lỗi này đều sốt ruột trong quá trình làm

tính chia bỏ đi bước trừ trung gian. Giải pháp khắc phục: Chỉ ra những sai sót cho học

sinh, hướng dẫn các em từng bước sửa sai để có kết quả đúng. Với những học sinh yếu

kém, tôi hướng dẫn các em nhân thương với số chia, viết tích dưới số bị chia rồi trừ

như phép trừ đặt tính thông thường để tìm ra số dư đúng. Sau quen dần mới khái quát

bỏ bước trừ trung gian.

VD: Xác định số dư sai:

35’10

61

3

290

12 (dư 3)

Nguyên nhân: Do nhân sai, trừ sai nên có số dư sai. Do không hiểu số dư này có
giá trị là bao nhiêu, mà thường qui tất về hàng đơn vị. Giải pháp khắc phục: Qua việc
luyện tập trong phép tính cụ thể khắc sâu cho học sinh thấy được: “số dư ở hàng đơn
vị nào thì mang giá trị của hàng đơn vị đó”. Để làm được việc này trước hết tôi phân
tích cho học sinh hiểu được thực chất của việc gạch bỏ những chữ số 0 ở tận cùng
của số chia và số bị chia là ta đã thực hiện chia nhẩm cả số chia và số bị chia cho 10,
100,… thì thương không thay đổi (3510 : 290 = 12 dư 30, mới là kết quả đúng). Mặt
khác tôi yêu cầu học sinh tính toán chú ý từng bước, tránh nhân sai trừ sai. Cuối

cùng tôi yêu cầu học sinh thử lại rồi trao đổi với bạn khẳng định kết quả đúng.

VD: Thiếu hoặc thừa số 0 ở thương:

36’5’4

054

0

18

23

Xem nhiều hơn: Tiểu luận Tư tưởng Hồ Chí Minh: Tư tưởng Hồ Chí Minh về đạo đức

( thiếu số 0 ở thương)

Nguyên nhân: Do học sinh không nắm chắc các trường hợp chia có chữ số 0 ở

thương. Trong quá trình chia không nắm chắc được trình tự: Mỗi hàng đơn vị trong

số bị chia chỉ được hạ một lần và mỗi lần “hạ” phải “hạ” xuống bên phải số dư rồi

mới chia nếu không chia được, ta mới hạ tiếp bên phải thêm hàng đơn vị nữa, trong
khi đó quên không ghi 0 ở thương, nên thiếu chữ số 0 ở thương. Giải pháp khắc
phục: Để khắc phục những sai sót trong trường hợp này, tôi yêu cầu học sinh phải
xác định được thương có mấy chữ số rồi mới tiến hành tính chia. Trong ví dụ cụ thể
phải đối chiếu với trường hợp thương có chữ số 0 xem mình sai ở đâu? sửa lại như
thế nào? Chẳng hạn ở VD trên, khi “hạ” 5 thì 5 không chia được cho 18 nên phải ghi
0 ở thương và “hạ” tiếp số 4 bên phải số 5 được 54 : 18 = 3, (3654 : 18 = 203, mới là
kết quả đúng). Cuối cùng tôi yêu cầu học sinh thử lại rồi luận bàn với bạn khẳng định

kết quả đúng.

VD: Chia chưa hết thì dừng lại hoặc thực hiện chia 2 lần ở hàng đơn vị:

36’5’4’0’0

054

0

180

203

(Đang chia dở thì dừng lại dẫn đến yêu đương sai)

Nguyên nhân: Do học sinh không biết xác định thương có bao nhiêu chữ số? Và

phép chia khi nào thì dừng lại. Nói cách khác học sinh không nắm chắc cách chia và
trình tự chia. Giải pháp khắc phục: Để khắc phục sai sót này tôi yêu cầu học sinh sau
khi xác định lấy mấy chữ số đầu của số bị chia, chia cho số chia thì đánh dấu phẩy
lên đầu số bị chia vừa lấy và xem bên phải còn mấy hàng đơn vị ta sẽ biết phép chia
được tiến hành qua mấy lượt chia, và mỗi lượt ta lại có một chữ số ở thương ta sẽ
xác định được ngay thương có mấy chữ số; và khi nào phép chia sẽ dừng lại.
(0888806742 : 180 = 2030, mới là kết quả đúng).
0888806742. Rèn kĩ năng ước lượng thương chính xác:
Trước khi có giải pháp: Đa số học sinh ước lượng thương theo cách thử – chọn
bằng phép cộng (lấy số chia cộng với số chia), VD: 136 : 27 thì 27 + 27 + 27 + 27 +
27 = 135 gian, đôi khi còn cộng sai, dẫn đến ước lượng thương sai. Để khắc phục và giúp học
sinh ước lượng thương nhanh và chính xác hơn, tôi hướng dẫn học sinh thực hiện như
sau:
Thử – chọn bằng phép chia tầm thường: Chia nhóm chữ số đầu tiên (tách ra từ
hàng cao nhất) của số bị chia cho chữ số hàng cao nhất của số chia (nếu chia được)
VD: 136 : 27; ta thử chọn bằng phép chia tầm thường như sau: 136 (che 6 được 13),

27 (che 7 được 2), ta lấy 13 : 2 ( khoảng = 6); chọn 6 để thử; 6 x 27 = 162(loại);

5 x 27 = 135 (nhận); vậy 136 : 27 = 5 (dư 1).

Thử – chọn bằng làm tròn: Làm tròn (giảm đi): Nếu số chia tận cùng là 1,2 hoặc 3

thì ta làm tròn (tức là bớt đi 1,2 hoặc 3 đơn vị ở số chia). Trong thực hành, ta chỉ việc

hướng dẫn học sinh bớt đi chữ số tận cùng đó (và cũng phải bớt đi chữ số tận cùng của

số bị chia) VD: 63 : 21= ? (63 và 21 ta làm tròn giảm đi thành 60 và 20) nhẩm

60 : 20 = 3, sau đó thử lại: 21 x 3 = 63 để có kết quả 63 : 21 = 3; Làm tròn (tăng lên):

Nếu số chia tận cùng là 7,8 hoặc 9 thì ta làm tròn (tức là thêm 1,2 hoặc 3 đơn vị vào số

chia).Trong thực hành, ta chỉ việc hướng dẫn học sinh bớt đi chữ số tận cùng đó đi và

thêm 1 vào chữ số liền trước (và bớt chữ số tận cùng của số bị chia) VD: 87 : 29= ?

(87 và 29 ta làm tròn tăng lên thành 90 và 30) nhẩm 90 : 30 = 3, sau đó thử lại:

29 x 3 = 87 để có kết quả 87 : 29 = 3; Làm tròn (cả tăng lẫn giảm): Nếu số chia tận

cùng là 4, 5 hoặc 6 thì ta làm tròn theo cả hai cách (cả tăng lẫn giảm) rồi thử lại các số

trong khoảng hai thương ước lượng này VD: 104 : 26= ? (26 làm tròn giảm được 20,

26 làm tròn tăng được 30,104 làm tròn giảm được 100). Ta có 100 : 20 = 5, 100 : 30 =

3, vì 3 Thử – chọn bằng nhân nhẩm: Nếu dùng phép nhân thì ta nhân nhẩm rồi thử chọn. VD: 136 : 27, ta viết phép nhân tương ứng  x 27 = 136. Chẳng hạn

5 x 27 = 135 số lớn nếu nhân nhẩm sẽ khó hơn, nên ít dùng.

Một trong ba cách thử – chọn trên sẽ giúp học sinh ước lượng thương nhanh và

chính xác hơn. Để khắc sâu cho học sinh kĩ năng thử chọn ước lượng thương thành

phần một cách thành thạo. Trong quá trình hình thành bài mới, nếu thấy hoạt động

nhóm chưa hiệu quả, tôi sẽ hướng dẫn các em cụ thể như các ví dụ trên theo logo cả

lớp. Trong quá trình làm các bài tập trong SGK, các bài tập trong tiết tăng cường, tôi

thường sửa sai và uốn nắn các em kịp thời: Em nào thực hiện sai tôi yêu cầu thực hiện

lại theo đúng kĩ thuật các bước chia, cách ước lượng thương, để các em khắc sâu hơn.

3.3. Khả năng áp dụng của giải pháp:

Các giải pháp trên áp dụng có kết quả cho tất cả các đối tượng học sinh trong

lớp 4/3, lớp tôi đang dạy và đã được triển khai áp dụng có hiệu quả cho học sinh toàn

khối lớp 4 của trường Tiểu học Mỹ Thuận và có thể áp dụng cho học sinh khối 4

trong toàn huyện.

3.4 Hiệu quả, lợi ích thu được:

Năm học qua, tổ chức dạy học theo các giải pháp nêu trên, hiệu quả giờ dạy

được nâng lên rõ rệt. Học sinh hứng thú học tập hoạt động tích cực hơn, các em

mạnh dạn tự tin hơn khi làm bài. Số em làm đúng các bước chia, cho kết quả đúng

được nâng lên rõ rệt. Kết quả thực nghiệm học sinh lớp 4/3 năm học 0888806742 được

thể hiện qua bảng sau:

Thời gian

Trước khi có

giải pháp

Sau khi có

giải pháp

TSHS

Nắm chắc kĩ

thuật thực hiện

phép chia số tự

nhiên

TS

%

Khắc phục các lỗi
thường gặp mặt trong

quá trình thực

hiện phép chia

TS

%

Kĩ năng uớc

lượng thương

chính xác

TS

%

15

11

73,3

Xem nhiều hơn: .:| Khoa Công nghệ thực phẩm, Trường Đại học Công nghiệp Thực phẩm thành phố Hồ Chí Minh:.

9

60

9

60

15

15

100

15

100

15

100

3.5 Tài liệu kèm theo gồm: Không./.
Hòn Đất, ngày 12 tháng 11 năm 2018
Người diễn tả

Phạm Đức Thuận

Nguồn gốc: https://danhgiaaz.com
danh mục: Đánh giá – Review

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *